

L'IDROGENO CARBON NEUTRAL
E LA CONNESSIONE TRA ECONOMIA
CIRCOLARE E DECARBONIZZAZIONE

Pierroberto Folgiero CEO NextChem e Gruppo Maire Tecnimont

Stati Generali della Green Economy 2020

SOCIETÀ OPERATIVE

PRESENZA NEL MONDO

NextChem

Neosia Renewables IDROCARBURI

~ 9,300
DIPENDENTI & PROFESSIONISTI

50 SOCIETÀ OPERATIVE 45 PAESI

-ENERGIE RINNOVABILI

RISULTATI FY 2019

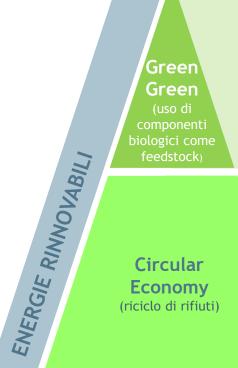
€3.3 BLN

REVENUES

€235.6 MLN

EBITDA

€6.4 BLN


BACKLOG

LA ROADMAP DI NEXTCHEM

2020 2021-2024 >2024

Create

Bio-carburanti di 1° generazione

Bio-carburanti di 2° e 3° generazione

Bio-polimeri per applicazioni ad alto valore aggiunto

Improve

Upcycling di rifiuti plastici

Riciclo integrato (Meccanico & Chimico)

Waste to Fuels

Waste to Chemical

Greening the Brown

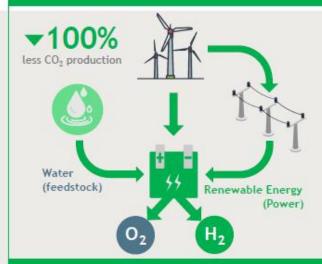
(riduzione di inquinamento dei processi industriali)

waste to fuels

Energia rinnovabile per prodotti chimici e carburanti

Industria del gas naturale

ENERGIE RINNOVABILI

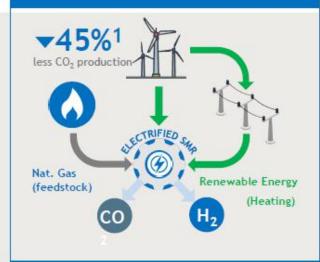


L'IDROGENO CIRCOLARE

Low Carbon Hydrogen

Green Hydrogen

H₂ from Water Electrolysis

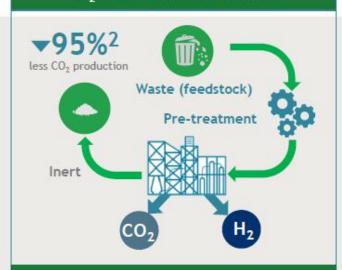


Key Points

- √ NO stack & NO emission
- ✓ 0 carbon intensity H₂, leveraging on lowcost renewable energy
- ✓ NextChem is currently co-developing the "AWE 2.0"

Super Blue™ Hydrogen

H₂ from NG with Electrified SMR



Key Points

- ✓ NO stack & NO emission of CO, SOx, NOx
- √ 4 x H₂ production per MWh of renewable energy vs. Green H₂
- √ 0 carbon intensity H₂ achievable with carbon capture / bio-gas

Circular Hydrogen

H₂ from Waste Gasification

Key Points

- ✓ Additional revenue stream from waste management, synergies with waste cos.
- √ Solving waste burden producing syngas
- ✓ Negative carbon intensity H₂
 considering Biogenic Waste fraction and integration with CCS/CCU.

Note: (1) vs. conventional SMR, up to 100% achievable with CO₂ capture.

(2) vs. conventional SMR and Waste Incineration, up to negative Carbon Intensity considering Biogenic Waste fraction and integration with CCU or Electrolysis.

IL MODELLO DI DISTRETTO CIRCOLARE DI NEXTCHEM

Integra diverse tecnologie, per il riciclo e la decarbonizzazione

- L'*Upcycling* di rifiuti plastici
- Il Waste to Chemicals per la produzione di gas, chemicals e fuels «circolari» da plasmix e CSS
- La tecnologia dell'elettrolisi per la produzione di Idrogeno green
 - √ modello del futuro
 - ✓ realizzabile già oggi
 - √ con tecnologie collaudate
 - ✓ sostenibile economicamente
 - ✓ potenzialmente carbon neutral
 - ✓ integrabile per fasi successive.

I PRODOTTI CHIMICI CIRCOLARI DEL MODELLO DI DISTRETTO NEXTCHEM

PRODOTTI CHIMICI CIRCOLARI DALLA CONVERSIONE DI PLASMIX E CSS

IL MODELLO DI NEXTCHEM PER LA DECARBONIZZAZIONE ATTRAVERSO IL RICICLO

RIFIUTI PLASTICI E SECCHI

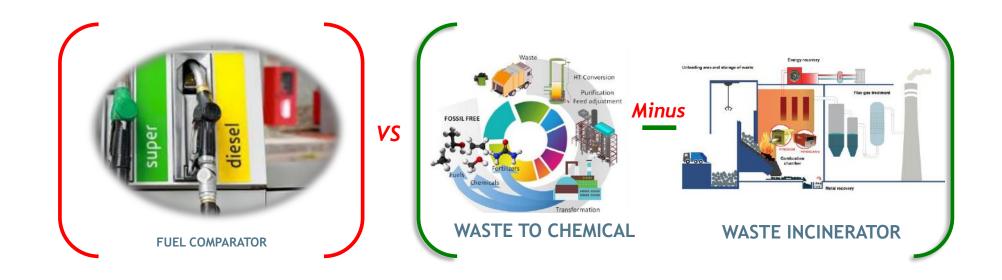
CONVERSIONE CHIMICA & PURIFICAZIONE

PROCESSI INDUSTRIALI A BASSE EMISSIONI DI CARBONIO & MOBILITÀ

SOSTITUZIONE DEL GAS NATURALE NEI PROCESSI INDUSTRIALI

CIRCOLARE
BIOCARBURANTI
CHIMICA PER LA
SANIFICAZIONE

Il Gas Circolare, in virtù delle sue qualità riducenti, può essere utilizzato all'interno di processi produttivi dell'industria petrolchimica come base per la produzione di idrogeno, metanolo, etanolo e altri composti chimici fondamentali per l'industria


Il Gas Circolare può essere utilizzato nell'industria siderurgica, come feedstock in sostituzione di polverino di carbonio in altoforno o in sostituzione di gas naturale (metano) in processi di riduzione diretta (DRI)

L'utilizzo del Gas Circolare consente la sostituzione di un feedstock di origine fossile con uno di origine «circolare», ad un costo competitivo. Il Gas Circolare prodotto da conversione chimica di questi materiali di scarto diventa un intermedio per produrre chemicals preziosi per l'industria, con un'impronta circolare e a basso impatto di carbonio. Chemicals di origine "circolare" che riducono il fabbisogno di estrazione di fonti fossili, riducendo le importazioni, contribuendo alla decarbonizzazione e al riciclo e fornendo carburanti low carbon al settore dei trasporti, un settore che incide in modo cospicuo sulle emissioni globali di CO2.

GHG SAVING

- L'energia elettrica prelevata da rete determina emissioni indirette di CO2 che possono essere abbattute con un ricorso a fonti rinnovabili;
- □ I rifiuti utilizzati come materia prima nei processi proposti, hanno associato un credito negativo di CO2 derivante dall'incenerimento evitato;
- □ Il GHG saving viene valutato rispetto alle emissioni del fuel sostituito.

METANOLO CIRCOLARE - LIVORNO - PROGETTAZIONE BASIC TERMINATA

190 kTON/YEAR

TOTALE QUANTITÀ DI PLASMIX/RDF RECUPERATO

100 kTON/YEAR

PRODUZIONE TOTALE DI METANOLO

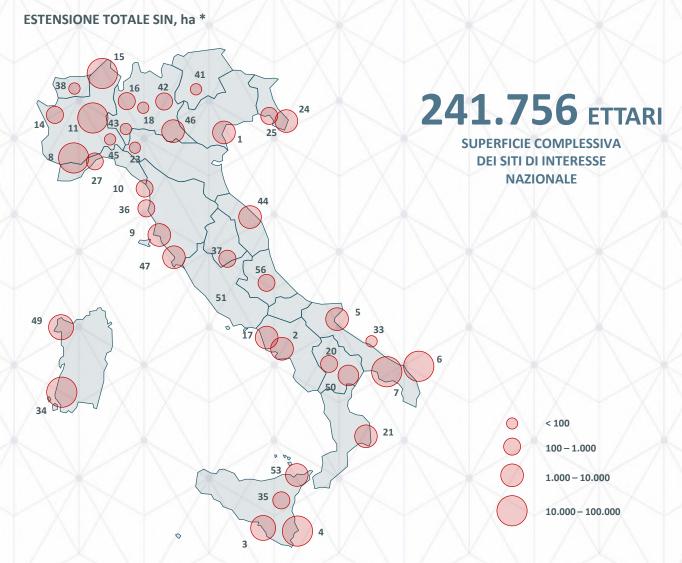
IDROGENO CIRCOLARE - PORTO MARGHERA - PROGETTAZIONE BASIC IN CORSO

190 kTON/YEAR

TOTALE QUANTITÀ DI PLASMIX/RDF RECUPERATO

205 MNm3/YEAR

PRODUZIONE TOTALE DI IDROGENO PURO


GAS E IDROGENO CIRCOLARE - TARANTO

STUDIO DI PRE-FATTIBILITÀ IN CORSO

SITI DI INTERESSE NAZIONALE

REGIONE	DENOMINAZIONE SITO
	11 - CASAL MONFERRATO
PIEMONTE	14 – BALANGERO
	15 - PIEVE VERGONTE
	45 - SERRAVALLE SCRIVIA
VALLE D'AOSTA	38 – EMARESE
	16 - SESTO SAN GIOVANNI
LOMBARDIA	18 - PIOLTELLO – RODANO
	42 - BRESCIA – CAFFARO
	46 - LAGHI DI MANTOVA E POLO CHIMICO
TREATO	43 – BRONI
TRENTO	41 - TRENTO NORD
VENETO	1 - VENEZIA (PORTO MARGHERA)
FRIULI VENEZIA GIULIA	24 – TRIESTE
	25 - LAGUNA DI GRADO E MARANO
LIGURIA	8 - CENGIO E SALICETO
FRAULA DOMAGNIA	27 - COGOLETO – STOPPANI
EMILIA ROMAGNA	23 – FIDENZA
TOSCANA	9 – PIOMBINO 10 - MASSA E CARRARA
	36 – LIVORNO
	47 - ORBETELLO AREA EX-SITOCO
UMBRIA	37 - TERNI – PAPIGNO
MARCHE	44 - FALCONARA MARITTIMA
LAZIO	51 - BACINO DEL FIUME SACCO
ABRUZZO	56 - BUSSI SUL TIRINO
CAMPANIA	2 - NAPOLI ORIENTALE
	17 - NAPOLI BAGNOLI – COROGLIO
PUGLIA	5 – MANFREDONIA
	6 – BRINDISI
	7 – TARANTO
	33 - BARI – FIBRONIT
BASILICATA	20 – TITO 50 - AREE INDUSTRIALI DELLA VAL BASENTO
CALABRIA	21 - CROTONE – CASSANO – CERCHIARA
CALADINIA	3 – GELA
SICILIA	4 – PRIOLO
	35 – BIANCAVILLA
	53 – MILAZZO
SARDEGNA	34 - SULCIS – IGLESIENTE – GUSPINESE
	49 - AREE INDUSTRIALI DI PORTO TORRES

BENEFICI PER IL PAESE

INCREMENTO DEL TASSO DI RICICLO RIDUZIONE DELL'INCENERIMENTO E DELLO SMALTIMENTO IN DISCARICA

SOSTITUZIONE DI FEEDSTOCK FOSSILI CON CONSEGUENTE RIDUZIONE DELLE EMISSIONI DI CO2

RIDUZIONE DELLE IMPORTAZIONI E DELLA DIPENDENZA DALL'ESTERO PER CHEMICALS INDUSTRIALMENTE STRATEGICI

CONTRIBUTO ALLA DECARBONIZZAZIONE
E ALLA RICONVERSIONE GREEN DI SITI INDUSTRIALI BROWNFIELD

APPLICAZIONE INNOVATIVA DI TECNOLOGIE PER LA TRANSIZIONE ENERGETICA GIA' CANTIERABILI (ITALIA PRIMA IN EUROPA)

NextChem S.p.A.

Registered Office: Via di Vannina 88/94 00156 Rome - Italy P +39 06 9356771

Operating Offices: Via Gaetano De Castillia 6A 20124 Milan - Italy P +39 02 63131

via Guido Polidoro 1 67100 L'Aquila - Italy P +39 0862 763411 F +39 0862 763547

www.nextchem.com

