Three Revolutions in Urban Transportation:

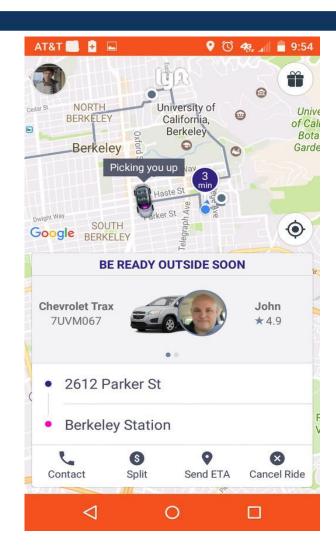
How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

Stati Generali della Green Economy 2017

The Future of mobility: less, electric, green and shared

Rimini Italy, 7 November 2017

Lew Fulton, Co-Director Sustainable Transportation Energy Pathways Program (STEPS) UC Davis



Passenger Transport Revolutions

- Streetcars (~1890)
- 2. Automobiles (~1910)
- 3. Airplanes (~1930)
- 4. Limited-access highways (1930s....1956)

2010+

- Vehicle electrification
 - low carbon vehicles and fuels
- 2. Real-time, shared mobility
 - less vehicle use
- 3. Vehicle automation (2025?)
 - Uncertain impacts

Research undertaken by UC Davis and ITDP, part 3 of a series

Global scenario study to 2050 focused on potential 3 Revs impacts on CO2, energy use, costs

Study supported by UC Davis STEPS Consortium and by Climate Works, Hewlett Foundation, Barr Foundation

https://steps.ucdavis.edu/threerevolutions-landing-page/

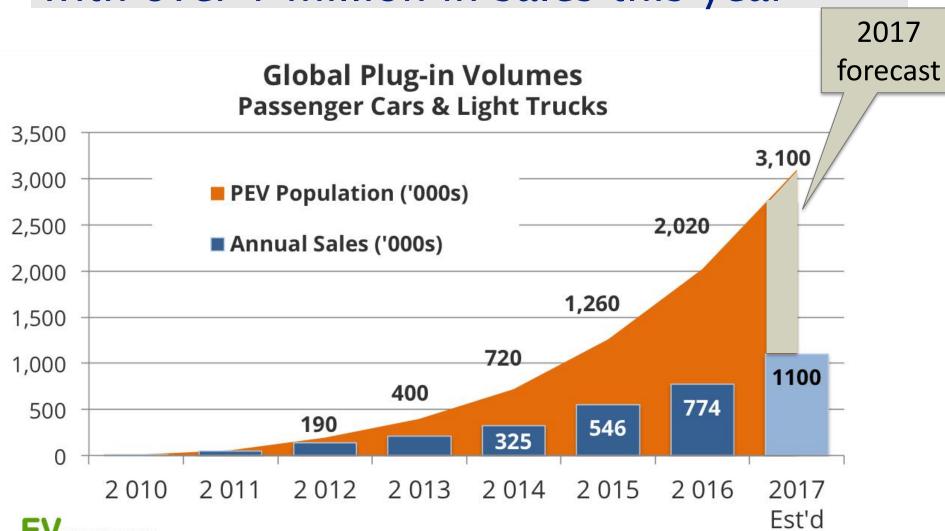
Three Revolutions in Urban TRANSPORTATION

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

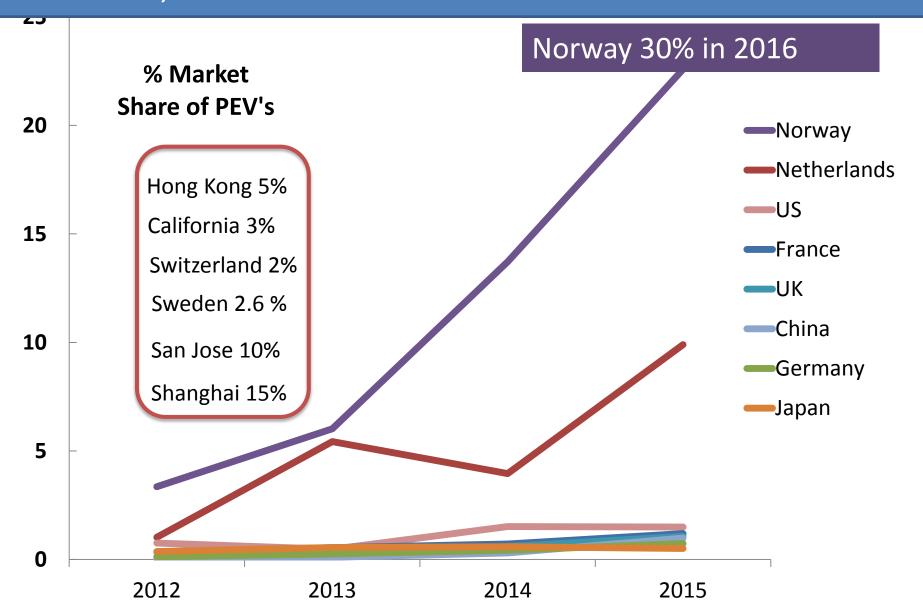
> Lew Fulton, UC Davis Jacob Mason, ITDP Dominique Meroux, UC Davis

> > May 2017

Research supported by: ClimateWorks Foundation, William and Flora Hewlett Foundation, Barr Foundation



Have EVs arrived?



During 2017, The number of PEVs worldwide will likely go over 3 million, with over 1 million in sales this year

Norway & Netherlands achieved high PEV market shares in 2016, most other national markets around 1-2%

Many PEV sales forecasts getting optimistic about PEV sales millions Perhaps 40 % of 600 2016 2017 world market in 2040 Bloomberg 500 OPEC ExxonMobil 400 300 Perhaps 15 % of world market in 2030 200 100 2020 25 30 35 40 Source: Bloomberg New Energy Finance

A plausible PEV rollout scenario based on technology change, incentives & history of previous technology rollouts

This sales curve would be similar to the rollout of HEVs in Japan & California, 1997-2015

1st generation
early policy,
converted
vehicles,
"innovators" &
early
infrastructure

improved batteries, more driving range, "followers" Adequate infrastructure

generation:
batteries,
vehicles,
"core market"
PEVs
competitive

2025

Early core

market:

6-15%

generation:
PEVs begin
to dominate
2030

4th

California
2025 ZEV goal
= 15% / 1.5
million BEVS,
FCV & PHEVs

Main market 15-25%

2010

2015

1-2%

3-5% of market

2020

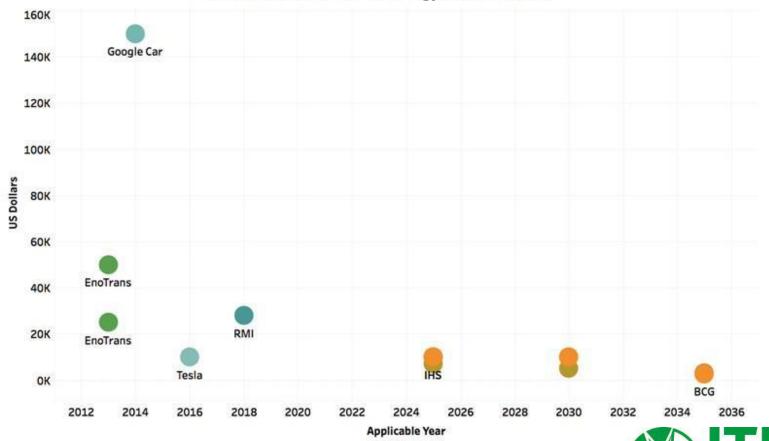
700 300 200 150 Lithium pack prices per kWh

Car of the future?

Or this?

Electrification + Automation: likely, but not definitely, together

All autonomous vehicles in development feature some form of electrification

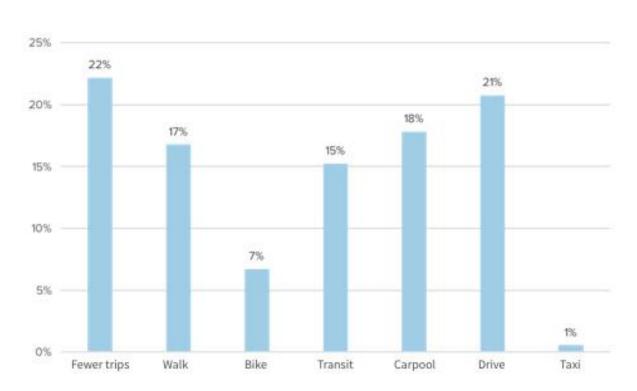

	i				
Parent		Model	Powertrain	Production	Notes
Company					
Nissan	Nissan	Leaf	Electric	2020	
GM	Chevrolet	Bolt	Electric		Testing 40 vehicles in SF and Scottsdale
FCA	Chrysler	Pacifica	Hybrid		Testing 100 vehicles with Google
Ford	Ford	Fusion	Hybrid	2021	
Volvo	Volvo	XC90	Hybrid		
Uber	Ford	Fusion Energi	PHEV		
Uber .	Volvo	XC90	Hybrid		
Daimler	Mercedes- Benz	F015 Luxury in Motion	Hydrogen Fuel Cell Plug-In Hybrid		Research Vehicle

AV costs dropping quickly

Cost of LIDAR used on the Google car was \$75 – 85,000, and by early 2016, Velodyne began selling LIDAR for \$500 per unit to Ford.

Autonomous Vehicle Technology Cost Estimates

Institute for Transportation & Development Policy



Ride sharing is exploding around the world...

...but is it really ride sharing?

Ride-hailing in the U.S. currently substitutes for more sustainable modes than for driving

Source: Clewlow, Regina R. and G S. Mishra (2017) Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States.

- 49% to 61% of ride-hailing trips in major U.S. metro areas would have not been made at all, or by walking, biking, or transit.
- Ride-hailing attracts
 Americans away from bus
 services (a 6% reduction)
 and light rail services (a 3%
 reduction).
- Ride-hailing serves as a complementary mode for commuter rail services (a 3% net increase in use).
- Directionally, we conclude that ride-hailing is currently likely to contribute to growth in vehicle miles traveled (VMT).

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

This can go in very different directions...

"Heaven" Scenario

- Ride sharing, multimodal (transit/NMT) ecosystem
- More compact, livable cities
- "Right-sizing" of vehicles
- Reduction in traffic/travel times
- Fuel efficiency improvements/ electrification/lower CO2

"Hell" Scenario

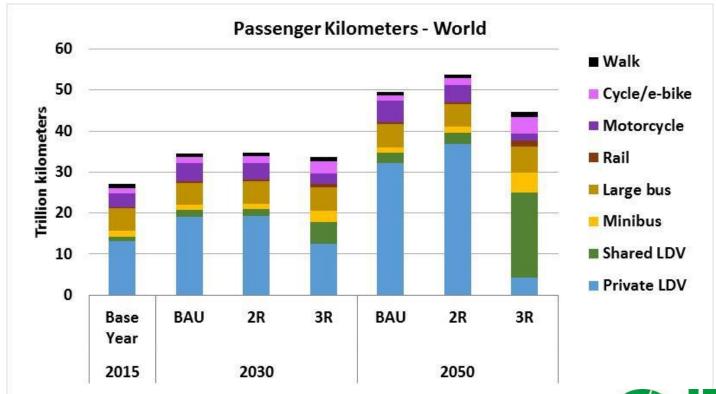
- More single-occupant (and zero occupant) vehicles
- More sprawl/cardependence
- Bigger vehicles
- Longer trips/ time spent traveling/ increased traffic congestion
- Higher energy use/CO2

Some questions and conflicts

- Automation: lower per-trip costs, lower "time cost" for being in vehicles
 - Just how much cheaper will it be?
 - Private automated vehicles = longer trips?
 - Empty running (zero passengers) of vehicles
 - Resulting relative costs of private vehicles, shared mobility, transit?
- Electrification goes with automation does it really?
 - Can get the job done with upgraded electrical system (such as hybrids)
 - But electric running will be much cheaper and durable?
- Ride hailing: cost savings v. convenience and risk
 - Complementary or at conflict with public transit use?
 - Will lower costs reduce the incentive to ride share?

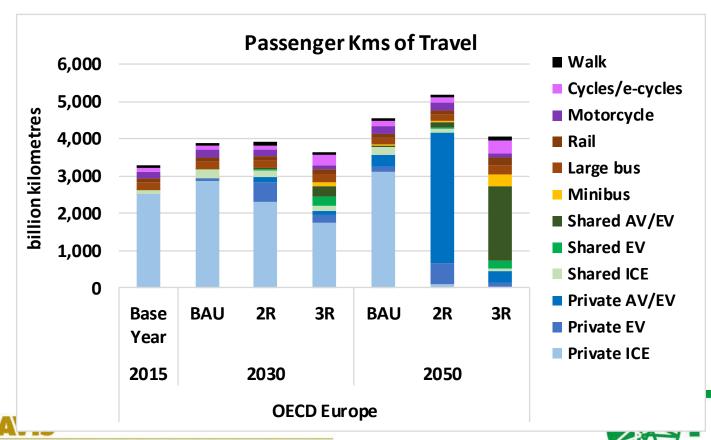
Part 2: our scenarios...we want to explore these interactions and different possible futures

Rough guide to the three scenarios

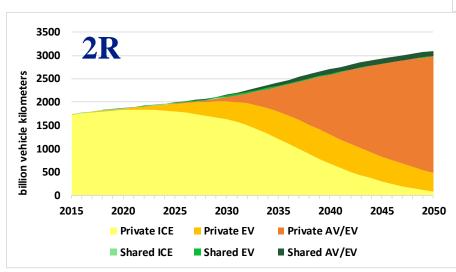

	Auto- mation	Electrifi- cation	Shared Vehicles	Urban Planning/ Pricing/TDM Policies	Aligned with 1.5 Degree Scenario
Business as usual, Limited Intervention	Low	Low	Low	Low	No
1R Automation only	HIGH	Low	Low	Low	No
2R With high Electrification	HIGH	HIGH	Low	Low	Maybe
3R With high shared mobility, transit, walking/cycling	HIGH	HIGH	HIGH	HIGH	YES

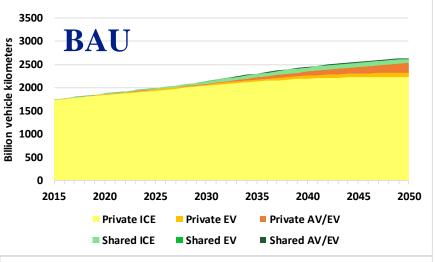
Passenger kilometers of travel by scenario/mode World

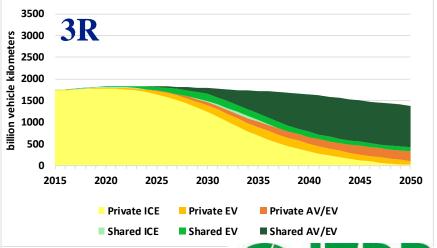
- Automated vehicle travel not significant by 2030 in any country/scenario, but dominates in 2050 in most of the world. Results in much higher travel in 2R
- In 3R private LDVs reach very low levels; nearly 50% of travel in 2050 is in transit/non-LDV modes.



Passenger kilometers of travel by scenario/mode OECD Europe

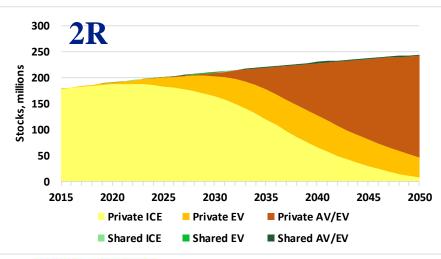

- Automated vehicle travel not significant by 2030 in any scenario, but dominates in 2050. Results in much higher travel in 2R
- Europe remains fairly car dominated to 2050 modal mix changes in 3R, but mostly due to TNCs. Significant minibus travel. Non-car travel reaches 35% in 3R

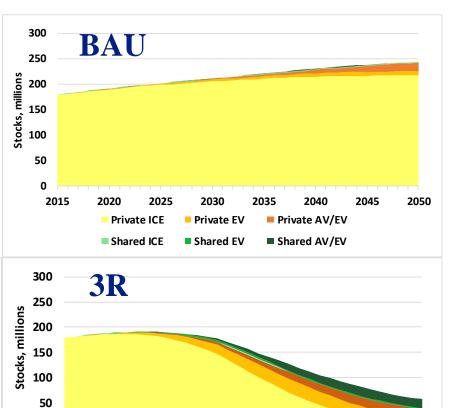



& Development Policy

OECD-Europe LDV travel (VKm) by scenario

- 2R vehicle travel rises sharply after 2030 due to lower travel costs from automated vehicles
- 3R vehicle travel flat despite declining vehicle stock, given higher travel per vehicle of public vehicles





OECD-Europe LDV stock evolution by scenario

- 2R stocks nearly completely autonomous by 2050
- 3R stocks strongly decline after 2030, due to lower passenger travel levels, intensive vehicle use and higher load factors

2040

■ Private AV/EV

2045

& Development Policy

2050

2015

2020

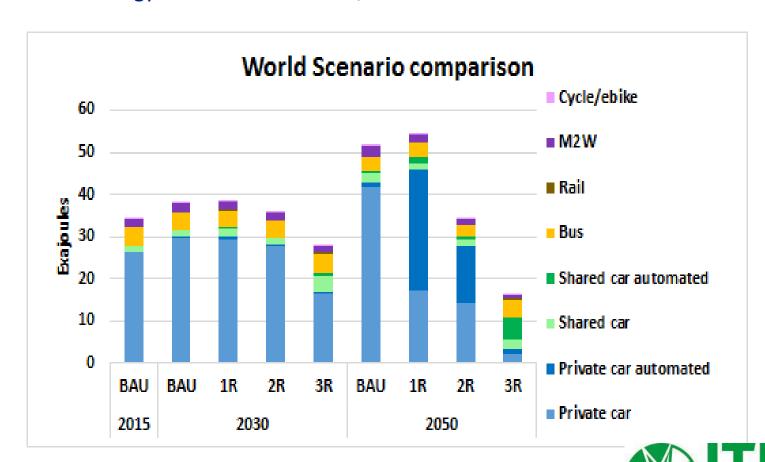
Private ICE

Shared ICE

2025

2030

Private EV

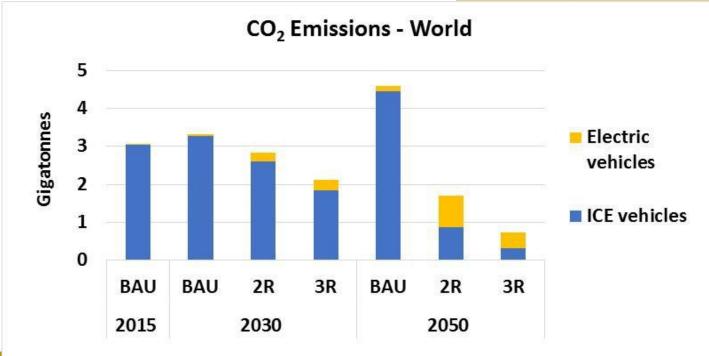

Shared EV

2035

Energy use by scenario, mode

• Far lower energy use in 2R due to EVs, and in 3R due to low LDV mode shares

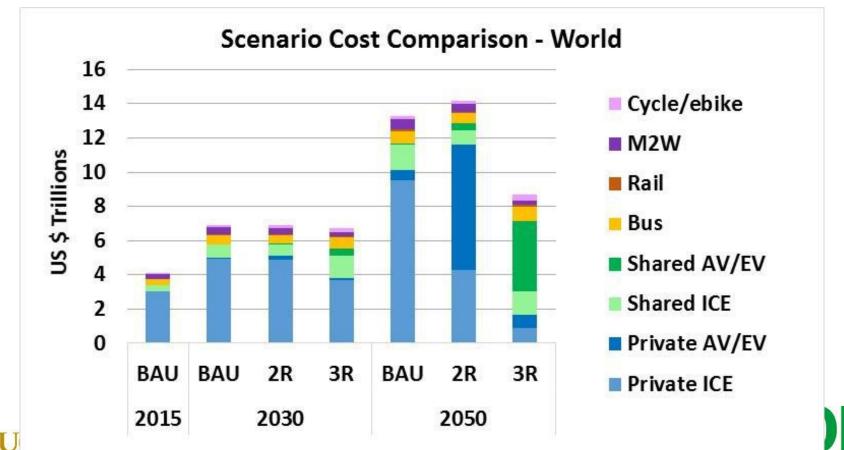
& Development Policy



Urban passenger transport CO2 by scenario, vehicle type, world

Global CO2 reduction in a 2DS electricity world, 2R/3R v. BAU, in 2050 and cumulative

4DS electricity shown; in 2DS, CO2 from electricity drops to near zero in 2050

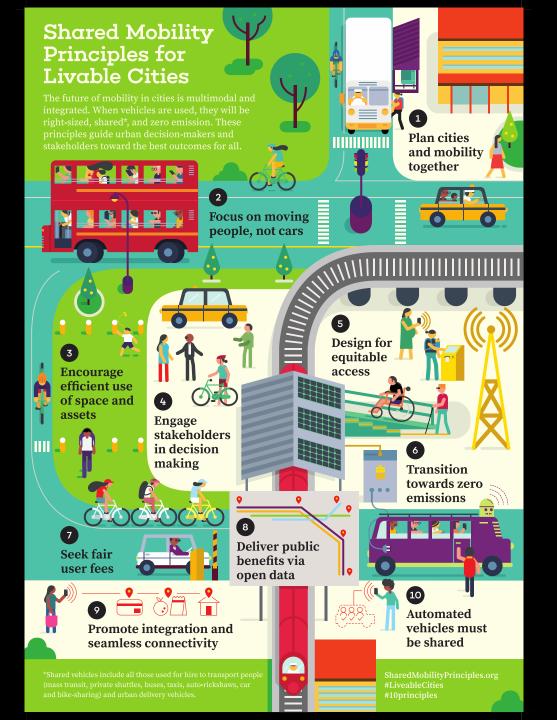

	2050	2015-2050 cumulative
2R v BAU	82%	37%
3R v BAU	93%	53%

Costs start to deviate across scenario after 2030, 3R 40% cheaper in 2050

- The combination of far fewer vehicles, lower travel/fuel levels, lower infrastructure requirements (roads/parking) makes 3R far cheaper.
- 2R more expensive than BAU due to higher cost of AV/EVs and greater travel

Supportive Policies - critical to success of the scenarios

- 3R Scenario (Automation + Electrification + Sharing):
 - Compact Urban Development policies
 - Efficient parking policies
 - Heavy investment in transit/walking/cycling
 - VKT fees (incl. congestion & emission factors):



Highest Fee

Largest Subsidy

10 Principles

https://www.sharedmobilityprinciples.org/

- 1. We plan our cities and their mobility together.
- 2. We prioritize people over vehicles.
- 3. We support the shared and efficient use of vehicles, lanes, curbs, and land.
- 4. We engage with stakeholders.
- 5. We promote equity.
- 6. We lead the transition towards a zero-emission future and renewable energy.
- 7. We support fair user fees across all modes.
- 8. We aim for public benefits via open data.
- 9. We work towards integration and seamless connectivity.
- 10. We support that autonomous vehicles (AVs) in dense urban areas should be operated only in shared fleets.

Three additional "Lew" Principles

- 1. We must pay close attention to the relative cost of vehicles/modes (\$\$, time, safety convenience, etc)
- 2. We must enable pricing as a true policy option, and have a social contract on how we spend those revenues
- 3. We must somehow convince consumers that they (and society) will be better off if they don't actually own driverless cars, and maybe don't own any car